# 太陽光発電が連系した 配電系統のシミュレータの開発

# 学生員 野田 幸久(東京農工大学) 小泉 裕孝(東京農工大学)

Development of a distribution network simulater connected with PV systems

Yukihisa NODA, Tamaki MIZUNO Hirotaka KOIZUMI, Kosuke KUROKAWA

Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN Fax: +81-42-385-6729, E-mail: yukiwo@cc.tuat.ac.jp

#### ABSTRACT

Islanding is one of serious problems in an electric power system connected with dispersed power sources. To secure the power system from islanding, it is quite important to verify the ability of islanding detection for the individual power sources in advance. The authors have been developing a scaled-down, simulated distribution network including a distribution substation, a high-voltage grid in sections, pole transformers, low-voltage lines, customer loads and a number of PV systems. This installation can be used for testing plural PV inverters as well as a number of AC modules. It is also considered useful for studying interference phenomena among multiple inverters. As the first stage of the development, several types of 3-4 kW class PV inverters have been evaluated.

キーワード:系統連系,単独運転 Keyword: grid-connected PV systems, islanding

# 1. はじめに

エネルギー問題・地球環境問題への意識の高まりや 設置コストの低下にともない,今後,住宅を中心とし て系統連系形太陽光発電システムがさらに普及してい くと考えられる。その結果,多数の太陽光発電システ ムが一本の配電線に集中的に連系された高密度連系状 態となることが予想される。高密度連系時においては, 単独運転など,従来の配電線には見られなかった様々 な現象が発生する可能性があり,安全性などの面から も評価が必要である。

これまで,実規模模擬配電線による試験や,シミュ

|    | 水野 | 環樹(東京農工大学)  |
|----|----|-------------|
| 会員 | 黒川 | 浩助 (東京農工大学) |

レーションによる解析が行われてきたが,実規模試験 設備は大規模・複雑でありコストがかかるという問題 があり,シミュレーションの検証という観点からも配 電系統の縮小モデルが必要とされている。

本研究では、ACモジュールの多数台連系および住宅 地区に太陽光発電システムが高密度に連系した系統を 想定し、配電系統の縮小試験を目的として、高圧配電 線から低圧需要箇所に至る 6.6kV高圧配電線一回線を モデルとした縮小模擬配電系統を設計した。

また今回は,模擬配電系統の一部を用いて,一般家 庭に用いられる 3~4kW 級の PV インバータ 1~2 台を連 系させ,配電線事故による系統停止時の単独運転検出 機能検証試験を実施し,その挙動について報告する。

#### 2. 縮小模擬配電線の設計

縮小模擬配電線を設計するためには,実際の配電系 統に即したモデルが必要である。そこで日本における 平均的な配電線から線路定数等の配電線データを使用 し,配電用変圧器から低圧需要箇所までのモデル配電 線を作成した。本来,配電用変電所からは複数のフィ ーダが引き出されているが,今回は一本のフィーダの みに着目した。

想定する配電線は住宅地区の配電系統であり,配電 用変電所引き出しの,3000kVA-6.6kV 三相3線式高圧 配電線1回線(亘長6km,直線状)を基本とする。高 圧配電線以下に柱上変圧器を介して100/200V単相3線 式低圧配電系統が接続しており,太陽光発電は高圧負 荷・低圧負荷のそれぞれに連系している。

Table.1 Distribution line data (Residential area)

|                                   | Residential area |
|-----------------------------------|------------------|
| line impedance                    | 1.781+j2.382[Ω]  |
| maximum demand (high-voltage)     | 814[kW]          |
| maximum demand (low-voltage)      | 1301[kW]         |
| minimum demand                    | 703[kW]          |
| number of customers (low-voltage) | 1850             |
| capacitance                       | 345[kVA]         |



Fig.1 Composition figure of reduced distribution network model (Residential area)

設計に用いた住宅地区における高圧配電線1フィー ダあたりの配電線諸量<sup>(1)</sup>を Table.1 に示す。これに基づ いて,縮小配電系統モデルを設計した結果が Fig.1 であ る。高圧配電線について,容量および電圧をそれぞれ 3000kVA-6600Vから 5kVA-200Vにスケールダウンした。 低圧系統については,実際の系統と同様,絶縁変圧器 を介して単相3線式100/200Vとした。このスケールフ ァクターを用いて線路インピーダンスの変換や高圧・ 低圧負荷の換算,太陽光発電容量の設定などを行う。

高圧配電線は,1km あたりの線路インピーダンス 0.313+j0.377[Ω]<sup>(2)</sup>を基準として,配電線データの線路イ ンピーダンス値をもとに亘長を算出し,p.u.法により縮 小換算した。その結果,1km あたりの換算インピーダ ンスは,0.172+j0.208[Ω]となる。

低圧配電系統に関しては、ACモジュールの多数台連 系試験と高密度連系時の縮小試験を行うことから、AC モジュールの出力を考慮して、負荷および太陽光発電 の容量の最低単位を 100W とした。このため、複数の 柱上変圧器以下の低圧配電系統を一つの模擬柱上変圧 器に一括配置することとした。今回は、低圧系統を四 区間に分割し、四つの模擬柱上変圧器を用いた。柱上 変圧器 20 台相当の 1kVA 絶縁変圧器と柱上変圧器 30 台相当の 1.5kVA 絶縁変圧器をそれぞれ二台ずつ使用 している。 負荷容量は配電線データ値を縮小容量比で変換し, 決定した。負荷装置の構成は,抵抗負荷・誘導性負荷・ 容量性負荷の組合せにより,有効電力と無効電力を 様々に変化させることができるものとする。また,誘 導電動機を設置することで,回転機負荷を模擬する。

太陽光発電の設置容量は,配電線容量比100%以上の 出力を可能とする。配電線容量100%とは,太陽光発電 の設置容量を低圧需要家一戸あたり3kWとすると,住 宅地区の低圧需要家戸数1850戸に対して,需要家戸数 比で50~60%程度となる。太陽光発電の出力を模擬する ためには,太陽電池模擬電源を用いる。この装置は, 日射強度・直並列構成などが任意に設定可能であり, 自由に1-Vカーブを作成し出力することができる。

Table.2 にスケールダウン後の縮小模擬配電線(住宅地区)の諸量を示す。

Table.2 Reduced distribution line data (Residential area)

|                                          | Residential area      |
|------------------------------------------|-----------------------|
| length of high-voltage distribution line | 6[km]                 |
| line impedance                           | 1.035+j1.246[Ω]       |
| maximum demand (high-voltage)            | 1.357[kW]             |
| maximum demand (low-voltage)             | 2.168[kW]             |
| minimum demand                           | 1.172 <sub>[kW]</sub> |
| number of customers (low-voltage)        | 1850                  |
| capacitance                              | 0.575[kVA]            |



Fig.2 Composition of the experiment equipment for 1 or 2 inverters

#### 3. 系統連系インバータ試験装置

今回,縮小模擬配電線の設計を行ったが,その全体 装置の一部を使用して,一般家庭用の3~4kW クラス系 統連系 PV インバータを試験するための実験設備を構 成した。この実験設備を用いてインバータ単機試験お よび2台程度の並列運転試験を行うことができる。以 下にその実験設備について概要を述べる。

実験設備の構成図を Fig.2 に,設置状況を Fig.3 に示 す。設備は,模擬商用電源装置,系統インピーダンス 模擬装置,模擬負荷装置,太陽電池模擬電源装置から 構成され,負荷条件や太陽電池出力電力などのパラメ ータを様々に設定し,あらゆる条件下で系統連系 PV インバータの単独運転検出機能および電圧上昇抑制機 能に関する実験などを行うことができる。

模擬商用電源は, αVA の交流安定化電源を用いる。 系統インピーダンス模擬装置は,単相3線式の低圧配 電線における柱上変圧器・低圧配電線路(100m程度)・ 引込線(20m)を経て受電点に至る線路を想定してお り,それらのインピーダンスの合計値0.150+j0.100[Ω] を抵抗とリアクトルで構成する。模擬負荷装置は3kW 程度までの負荷を模擬する装置であり,誘導性から容 量性に至るあらゆる負荷状態を模擬するために,抵 抗・リアクトル・コンデンサの並列回路とした。



Fig.3 Installation situation of experiment equipment

### 4. 系統連系インバータの動作試験

試験装置を用いて,系統停電時におけるインバータ の動作試験を行った。使用したインバータの仕様を Table.3 に示す。単独運転検出機能の受動方式には位相 跳躍検出,能動方式には無効電力変動が主に用いられ ている。今回は単独運転防止機能をマスクできるイン バータ(Inv.B,C)は,機能をマスクして実験を行った。

Table.3 Specification of the inverter for examinations

|       | Doted nower | Islanding detection                            |                                   |  |  |
|-------|-------------|------------------------------------------------|-----------------------------------|--|--|
|       | Rated power | Passive system                                 | Active system                     |  |  |
| Inv.A | 3.5kW       | System to detect                               | Variable reactive                 |  |  |
|       |             | jumping voltage phase                          | power system                      |  |  |
| Inv.B | 4.5kW       | System to detect                               | Variable reactive                 |  |  |
|       |             | jumping voltage phase                          | power system                      |  |  |
| Inv.C | 4.5kW       | System to detect<br>jumping voltage phase      | Frequency shift system            |  |  |
| Inv.D | 4.0kW       | System to detect<br>changing rate of frequency | Variable reactive<br>power system |  |  |

#### 4.1. インバータ単機試験

インバータを模擬系統に連系し,ブレーカを開放す ることで系統の停電を模擬した。実験条件は次のとお りである。周波数 50[Hz],負荷は,R=13.3[Ω], L=212[mH],C=48[μF]とし,太陽光発電出力は3kWに 設定した。Fig.4 およびFig.5 に主な結果を示す。波形 は上から負荷電圧,系統電流,インバータ電流の順で ある。Inv.A およびInv.B ともに系統停止後,150~300[ms] 程度でインバータが停止していることがわかる。



Fig.4 Waveform of Inv.A at open-circuit

|                       | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y dimensi            | Sector Sector                          |                           |               |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|---------------------------|---------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Solution Solution                      | svs Ssven                 | -             |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | - 1                                    |                           | of the second |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                           | 100 0.41      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | 1112.23                   | 0 042 0       |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | and the second            | 0.00          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | The second                | 2.00 0.41     |
| AT DEPENDENCE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                           | 0.00          |
| L L Par J . S . I I   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a location       |                                        | and a state of the second | 200 0.41      |
| K IN THE REAL POINT   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                        |                           | OM A          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                           | 9.9           |
|                       | 14 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                        |                           | 50.0 Wal      |
| -3600016 10vg         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | -140130.8042              |               |
|                       | 11 X 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1014 2010            | 1 1 1                                  | +58mt./84                 | 200 U.di      |
| We could include      | 000,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                        |                           | ē) C116 D     |
| A.A.A.A.J             | A A A A A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * * * * * *          | A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. |                           | 0.00          |
| 化开封开扫                 | 11/1/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/11/11             | 1171/111                               | - mail                    | 2.00 00.5     |
|                       | THE PARTY IS A REAL PARTY OF THE PARTY OF TH | ALLEN DE             | 014/11/12                              | 1000                      | 0.0           |
| ****                  | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 外外外外外                | たみずりそ                                  |                           | 10.0 U.di     |
| monorionation         | norm a n a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                    |                                        |                           | e (348 e      |
| 77777                 | 用机机机用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAAAA                | 化化化化                                   | 1115                      | 0.0           |
| LUT THE               | THE FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111111111            | 机载载机                                   |                           | 10.0 0.01     |
| Max. 16. 1. 1. 1      | REAL N. Y. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. 1. 1. 1. 1. 1. 1. | 1.8.3.1.3                              | San and a second          | Mon           |
| - 195721-18sa         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | -125270, 80m              |               |
| and the second second | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | #1/95                                  | /24 16:55:47              |               |

Fig.5 Waveform of Inv.B at open-circuit

# 4.2. インバータ並列運転試験

インバータニ台を連系し,単機試験と同様に系統を ブレーカにより切断した時のインバータの挙動を観測 した。Inv.Cの単独運転防止機能はマスクされている。



Fig.6 Behavior of inverter in islanding

実験条件は,負荷として R=13.3[Ω],L=449[mH], C=32[μF]に加えて 125[W]のグラインダニ台を用いた。 太陽光発電出力は,それぞれ2670[W]と720[W]に設定 した。抵抗と直列に可変抵抗を接続し,有効電力潮流 をできるだけゼロになるように調節した上で,系統を 切断した。

実験結果を Fig.6 に示す。系統切断時の有効電力潮流 は 0[W]である。系統切断後, Inv.D は 0.8 秒間運転を継 続した後,運転を停止したが, Inv.C はその後も 0.5 秒 間運転を続け, 1.3 秒間の単独運転が観測された。今回 は有効電力のみを調整したが,無効電力の調整により, さらに長時間の単独運転が観測される可能性がある。

#### 5. まとめ

太陽光発電の高密度連系時の縮小実験や AC モジュ ールの多数台連系試験に適用するため,縮小模擬配電 線を設計した。提案した方法により予想される利点を 以下に挙げる。

- ・ 省スペースで配電線全体の挙動を検証可能
- 試験設備を安価に構成可能
- ・ 日射量・負荷容量などが自由に設定可能
- 一定条件下での比較試験が可能
- 一定条件を維持した繰り返し実験が可能
- ・ 多数インバータの干渉問題の検証が可能

今回は模擬系統の一部を使用し,単独運転防止機能 をマスクし,単機および二台のインバータ連系試験を 実施し,本装置で単独運転が発生することを確認した。

今後,無効電力潮流の調整を加えてさらに条件を厳 しくした場合の試験を行う。また,現在開発が進めら れている AC モジュール用インバータの多数台連系試 験を実施し,その評価を行う。

なお,本研究は新エネルギー・産業技術総合開発機構(NEDO)の地域新生コンソーシアム研究の一環として実施された。

参考文献

- (1) 平成9年度新エネルギー・産業技術総合開発機構委託業務成果報告書「太陽光発電システム実用化技術開発(高密度連系技術の研究)」(1998)
- (2) 平成10年度新エネルギー・産業技術総合開発機構委託業務成果報告書「太陽光発電システム実用化技術開発(高密度連系技術の研究)」(1999)
- (3) 平成元年度新エネルギー・産業技術総合開発機構委託業務成果報告書「太陽光発電システム実用化技術開発(周辺装置の試験・評価法の調査研究)」 (1990)
- (4) 平成5年度研究報告書「分散型新発電技術実用化実証研究に関する保護 機能等試験方法の確立」(1994)
- (5) H.Haeberlin, J.Graf "ISLANDING OF GRID-CONNECTED PV INVERTERS: TEST CIRCUIT AND SOME TEST RESULT" 2<sup>nd</sup> WORLD CONFERENCE AND EXHIBITION ON PHOTOVOLTAIC SOLOR ENERGY CONVERSION (1998)
- (6) Weidong.He, Tomas Markvart, Ray.Arnold "ISLANDING OF GRID-CONNECTED PV GENERATEORS: EXPERIMENTAL RESULT" 2<sup>nd</sup> WORLD CONFERENCE AND EXHIBITION ON PHOTOVOLTAIC SOLOR ENERGY CONVERSION (1998)
- (7) Achim Woyte, Ronnie Belmans, K.U.Leuven, Johan Nijs, "ISLANDING OF GRID-CONNECTED AC MODULE INVERTERS" IEEE Photovoltaic Specialists Conference (2000)