183

二種類のフォトセンサを持つ新型日射計における スペクトル誤差の解析手法の開発

 学生員
 平田
 啓二
 正
 員
 黒川
 浩助(東京農工大学)

 非会員
 三宅
 行美
 非会員
 加藤
 正
 非会員
 中村
 幸三(英弘精機株式会社)

Development of Analysis Method of Spectral Error on

A New Pyranometer Composed of Multiple Photosensors

Keiji Hirata, Student-member, Kosuke Kurokawa, member, (Tokyo University of Agriculture and Technology) Yukiharu Miyake, Non-member, Tadashi Kato, Non-member, Kouzou Nakamura, Non-member, (EKO INSTRUMENTS Co., Ltd.)

1. はじめに

太陽光発電システムの発電量推定や評価を行う上で,日 射量は重要な要素である。本研究では,安価で長期安定性 に優れた半導体素子を二種類用いることで,従来のSi日射 計の弱点であるスペクトル誤差を改善し,高精度な日射の 計測を可能とするデュアルセンサ型日射計(Dual 日射計) の開発を目的としている。

現在,データの収集は屋外計測にて行っている。しかし, 得られる出力電圧には,スペクトル誤差の他,温度特性や 角度特性による誤差が同時に存在するため,Dual 日射計の スペクトル誤差のみを評価することが困難であった。

本稿では,分光放射強度と各センサの絶対分光感度を用 いて,各々の理論出力電圧を推定することで,Dual 日射計 が持つ角度特性および各センサが持つ温度特性の影響を受 けずに,スペクトル誤差のみを評価する手法を開発した。

2. デュアルセンサ型日射計

Dual 日射計は, Si センサ(分光感度域: 300~1100nm) および GaAsP センサ(分光感度域: 300~680nm)で補うこ とができない日射の長波長域に分光感度を持つ InGaAs セン サ(分光感度域: 900~1700nm)を追加することで,二種類 のセンサから得られる出力電圧により,正確な日射強度が 計測できる。図1に,計測に用いた各センサの相対分光感 度特性および基準太陽光スペクトルを示す。

図 1 に示すように, Dual 日射計の組合せは, Si+InGaAs とGaAsP+InGaAsの二通りが考えられる。

また,Dual 日射計の日射強度は,次式から求められる⁽¹⁾。 $G_{dual} = (2-C) \times K_1 \times E_1 + C \times K_2 \times E_2$(1)

ここで, *G_{dual}*: 全天日射強度, *E*₁, *E*₂: 各センサの出力電圧, K₁, K₂: 感度定数, C: 感度定数を最適化するための補正係数とする。

図 1 各センサの相対分光感度と基準太陽光スペクトル Fig. 1. Relative Spectral Response and Reference Solar Spectrum.

3. スペクトル誤差の解析手法

3・1 問題点および解析手法

Dual 日射計は, Si 日射計では感知することができない長 波長域の日射を捉えることで,スペクトル誤差を減少させ, より高精度な日射計測が可能になると考えられる。

しかし,日射の屋外計測においては,各センサの出力電 圧にスペクトル誤差の他,温度特性,日射計の角度特性に よる誤差が同時に存在するため,Dual日射計のスペクトル 誤差のみを評価することが困難であった。

そこで,本稿では分光器(MSR-7000/00,オプトリサーチ) を用いて,実測した分光放射強度と各センサの絶対分光感 度から各センサの理論出力電圧を推定することで,日射計 の角度特性および各センサの温度特性の影響を受けずに, Si+InGaAs および GaAsP+InGaAs,Si日射計のスペクトル誤 差のみを評価する手法を開発した。

3・2 理論出力電圧の算出手法

各センサの理論出力電圧は,分光放射強度を *I*,各セン サの絶対分光感度を *K*とすると,次式で求められる。

ここで, S: 各センサの受光面積, R: 検出抵抗値, λ1: 各 センサの感度波長域における始点波長,λ2: 各センサの感度 波長域における終点波長とする。

任意の快晴日 1 日を検定日と定め,分光放射強度と推定 した理論出力電圧から各センサの感度定数を決定する⁽¹⁾。得 られた感度定数を用いて,天候別の理論出力電圧を回帰式 (1)に適用し,Dual日射計の日射強度を求め,精密日射計 (MS-801,EKO)で計測された日射強度を基準値とし、そ の値と比較することより,Dual日射計であるSi+InGaAsお よびGaAsP+InGaAsのスペクトル誤差の評価を行う。また、 Dual日射計が持つスペクトル誤差の比較対象として、Si日 射計の日射強度に関しても、同様に本手法を用いて求める。

4. 解析結果

表1に示す快晴日216データ,曇天日192データの分光 放射強度から各センサの出力電圧を式(2)より推定した。 そして,2005/04/06を検定日と定め,各センサの感度定数を 決定し⁽¹⁾,式(1)より各日射計の日射強度を算出した。

基準値は精密日射計で計測された日射強度を用い,式(3) より Si+InGaAs および GaAsP+InGaAs, Si 日射計における基 準値からの誤差を算出した。

図 2 に快晴日,図 3 に曇天日の結果をそれぞれ示す。また,評価指数として用いた MBE および 1 σ, RMSE の結果を表 2 に示す。

 $Error = G_s - G$

ここで, *G_s*: 各日射計の日射強度, *G*: 精密日射計の日射強度 度とする。

表1 検証に使用したデータ

Table 1. Using data for the verification.

	年月日			
Fine day	2003/4/22, 2004/10/1, 2004/12/16, 2005/3/31, 2005/4/6			
Cloudy day	2003/7/22, 2003/8/28, 2005/5/20, 2006/4/14, 2006/4/19			

快晴日における誤差分布は,時間変化に伴う影響を受け ておらず,ほぼ一定の誤差分布を示していることがわかる。 つまり,求められた日射強度に関しては,日射計の角度特 性および各センサの温度特性による影響を受けていないと 考えられる。(図2,表1参照)

また,曇天日における誤差分布からは,Si日射計におい て誤差が大きく,且つ基準の日射強度よりも大きい日射強 度が出力されていることがわかる。これは,天候の違いか ら相対的な太陽光スペクトルが変化し,その結果 Si日射計 のスペクトル誤差が大きくなるという特徴⁽²⁾と類似した結 果を表しており,この点からも本稿で提案した手法を用い ることで,スペクトル誤差のみを抽出できていると考えら れる。(図3,表1参照)

図2 快晴日における誤差分布

Fig. 2. Error distribution in fine days.

図3 曇天日における誤差分布

Fig. 3. Error distribution in cloudy days.

表2 各日射計における評価指数

Table 2. Characteristic of evaluation for each pyranometer.

	weather	MBE [W/m ²]	1σ [W/m ²]	RMSE [W/m ²]
	Fine	2.0	4.0	4.0
S1+InGaAs	Cloudy	-1.0	7.0	7.0
	Fine	-8.0	3.0	8.0
GaAsP+InGaAs	Cloudy	-12.0	5.0	13.0
C. D	Fine	-6.0	7.0	9.0
S1 Pyranometer	Cloudy	16.0	9.0	18.0

5. まとめ

日射計のスペクトル誤差のみを評価するために,分光放 射強度と絶対分光感度から理論出力電圧を推測し,評価す る手法を新たに開発した。そして,この手法から推測した 天候別の理論出力電圧を用いることで,日射計の角度特性 および各センサの温度特性による影響を受けずに,日射計 のスペクトル誤差のみを評価することが可能であることを 示した。今後は,年間を通じてのデータ数を収集すること で,Dual日射計の精度や組み合わせを含めた検証を目指す。

文 献

(2) 井上・三宅・中村・加藤・黒川「デュアルセンサ型日射計の開発」, 平成 15 年電気学会電力・エネルギー部門大会論文集 pp.567~568

⁽¹⁾ K.Hirata, Y.Miyake, T.Kato, K.Nakamura and K.Kurokawa: "Development of a Reliable, Long Life Pyranometer Compsed of Multiple photo sensors", Proceeding of the 15th International Photovoltaic Science and Engineering Conference, pp.832-833, October 2005.