草川 正人(M1) 輿石 浩吉(B4) 桜井 康弘(B4)

1.トランスレス昇圧型インバータの開 発1.1 目的

AC モジュールを用いた太陽光発電システム は従来型のシステム構成に比べ多くの利点があ るため、近年欧米を中心に普及が進んでいる。 AC モジュールの大部分は太陽電池の裏面に小 型インバータ(MIC:Module Integrated Converter) が取りつけられている。そのためシステムを構 成するモジュールの数だけMICが必要になる。 これらのインバータは高性能・高信頼性である と共に経済性に優れ、小型・軽量化すべきであ る。太陽電池モジュールの出力電圧と交流出力 電圧階級とはそのまま整合が取れないので、現 在使われているMICの多くは変圧器を用いてい る。この変圧器を小さくするためにインバータ 主回路に高周波発振・整流の回路が必要であり、 回路構成が複雑になる。

この問題を解決するために、本研究では回路 構成が簡単な昇圧型 DC-DC コンバータを改良 した小型インバータの製作を行い、性能・特性 の評価を行っている。

1.2 回路構成および動作原理 図1に開発中のインバータの主回路を示す。

この回路は単一電源から両極性電圧を取り出す ことのできる極性逆転型 DC-DC コンバータを 改良したものである。

図1 トランスレス昇圧型インバータの主回路

スイッチ A・B は PWM で駆動される。この PWM の ON 時間 (T_{ON}) と OFF 時間 (T_{OFF})を制御す ることによりインダクタンスに蓄えられるエネ ルギー量が変化するため、入力電圧 V_I と出力電 圧 V_0 は式 (1)の関係で表される。

$$V_o = \frac{T_{ON}}{T_{OFF}} V_I \qquad \dots (1)$$

この特性を利用することにより比較的広い範囲 の入力電圧に対して電圧整合が可能である。ス イッチ C・E、D・F は 50Hz で交互に切り替わる。 このインバータの容量は 50W で設計した。

1.3 基本性能の評価

開発中の昇圧型トランスレスインバータを独 立運転し、基本性能評価を行った。

図2 電力変換効率

入力電圧 60V の時の変換効率を図 2 に示す。定 格容量の 20~90%の範囲で効率90%を超えるこ とが分かる。昇圧比 4~5 倍までこの効率曲線と 同等の性能が期待できる。

図3 独立運転時の各次高調波電圧(25W)

図3に入力電圧を変化させたときの各次高調波 電圧を示す。昇圧比の増加に伴いひずみ率(THD) も増加するものの3%以下の値である。

1.4 まとめ

本研究で提案するトランスレス昇圧型インバ ータは回路構成が簡単であり小型・軽量化が望 め、基本性能も従来型 MIC と同等であることを 示した。今後、系統連系用制御を追加すること により、AC モジュール用小型インバータとして 有望なものになると考えられる。

2.MPPT 制御の評価

2.1 研究目的

PV システムには数々の出力の低減要因が存 在する。これらの一つに MPPT 制御ミスマッチ 損失がある。実際得られる FT データから MPPT 制御ミスマッチ損失は数%にもなっておりその 原因は解明されていない。

本研究では、その MPPT 制御ミスマッチを起 こす条件を解明することを目的とする。

2.2 研究方法

MPPT 制御に着目し、評価を行った。動作点 と最大電力点とのずれによる電力低下率を表す 負荷整合補正係数を次式で定義した。

ここで、Pin は動作点における発電電力、 Pmax は最大電力点における発電電力である。

$$Kpm[\%] = \frac{\sum Pin}{\sum P\max} \times 100$$

本研究で用いた MPPT 制御法は、山登り法(3 点電力検出法)を用いた。この制御法は3点の 電力値を比較することで動作点を最大電力点に 近づける制御法である。1990年3月の日射デー タを用い、この電力値を求める時間間隔を変化 させたときの Kpm の変化を調べた。

2.3 シミュレーション結果

時間間隔の違いによる Kpm の変化のシミュレーション結果を図1に示す。

図1 時間間隔別による Kpm の変化

月間の Kpm の平均値は、1 秒間隔で 99.6%、5 秒間隔で 96%、10 秒間隔で 90.4%となった。

2.4 結論

電力値を検出する時間間隔を大きくするとそ の間一定電圧制御になり、損失が生じているこ とが分かった。

今後、本研究で用いた制御法で実験を行い、 シミュレーション結果と比較していく。また、 さらに他のMPPT制御法でシミュレーションを 行い制御法別に評価していく。

3.アレイ分布定数回路シミュレーショ

3.1 研究目的

太陽光発電アレイにおける雷サージに対する 対策として、アレイの接地について、シミュレ ーションにより検討していく。

3.2 研究方法

アレイの静電容量の分布状態を調べ、モデル を考えそのモデルでシミュレーションすること によってアレイの接地について検討していく。

モジュールには EVA など充填剤が誘電体と なり静電容量が分布している。またセルはpn接 合でできているため接合容量がある。まず、そ の静電容量の分布を実験と計算で求めることに した。測定したモジュールは裏面シートにアル ミ箔が使われておりアルミ箔とフレームは電気 的に接続されていないものである。

3.3 実験結果

実験と計算で求めたアレイのモデルを図1に 示す。C_dはセルの接合容量で約2µF、C₁はセル - アルミ箔間の静電容量で約20nF、C₂はアルミ 箔-フレーム間の静電容量で約1nFと求まった。

アルミ箔とフレームが電気的に接続されたモ ジュールの場合は図1のC₂が短絡されたものと 考えることができる。

3.4.まとめ

実験結果よりアルミ箔とフレームの電気的接 続の有無によって対地容量の大きさは大きく変 化することがわかる。またセルの接合容量は対 地容量に比べて大きいことがわかった。

図1のモデルの妥当性をパルス応答など測定 することにより検討する。そしてアレイのモデ ルを分布定数回路として考えサージ伝搬をシミ ュレーションしアレイの接地について検討して いく。