電気二重層キャパシタを組み込んだ独立型太陽光発電システム

学生員 川口 博嗣*,正員 黒川 浩助(東京農工大学),正員 野崎 洋介(NTT通信エネルギー研究所)

A Stand-Alone Photovoltaic System using Lead Acid Batteries and Electric Double Layer Capacitors

Hiroshi Kawaguchi*, Member, Kosuke Kurokawa*, Member, and Yosuke Nozaki**, Member *Tokyo University of Agriculture & Technology, **NTT Telecommunications Energy Laboratories

1. まえがき

近年,離島や山間部等の無電化地域での自立分散型電源 として独立型太陽光発電(PV)システムの導入が検討され ている。独立型 PV システムは一般的に , 不日照時のバッ クアップ電源として鉛蓄電池を用いているが,夜間や曇天 時には必ず放電が行われるため, 鉛蓄電池依存率や充放電 サイクルの増加等が劣化の要因となる。このため,頻繁な 電池の点検や交換が必要である。この問題を解決するため に筆者らは,充放電サイクルによる劣化がほとんどなく, 急速充放電特性に優れた電気二重層キャパシタ(EDLC) 印を鉛蓄電池と併用し,発電量の変動を平滑することによ り鉛蓄電池の負荷を低減するシステムを提案している[2]。 本論文では,提案しているシステムと鉛蓄電池の充電制御 としてチャージコントローラを用いた従来システムについ て,PV 模擬電源を用いて実時間における動作実験を行っ た。また発電電力,負荷供給電力及びシステム各部の損失 を分析し, 鉛蓄電池依存率の比較を行った。

2. システム構成

実験システムの各構成を図1に示す。(A)はPV出力に リレー式のチャージコントローラ(CC)を介して,鉛蓄電池 と直流負荷に接続したシステム(CC システム)である。 (B)はPV出力に2台のDC DCコンバータ(コンバー タ1,コンバータ2)を直列に接続し,コンバータ1の出 力にEDLCを,コンバータ2の出力に鉛蓄電池を接続した システム(EDLC併用システム)である。

3. EDLC 併用システムの制御

EDLC併用システムの制御フローを図2に示す。コンバ ータ1は,PV出力電力を最大にするための最大電力追従 制御(MPPT)モードとEDLCの過電圧を防止するための 定電圧モードを設定する。コンバータ2は,負荷相当の電 流のみを出力する定電流モードとEDLCの電圧がほぼ定 格に上昇した場合に定電圧で一定とする定電圧モード,鉛 蓄電池が最適充電電圧に達すると浮動充電となるフローテ ィングモードを設定する。このフローを用いることにより, EDLCの充放電を優先して動作できるため,鉛蓄電池にか かる負荷を低減することが可能である。

(B) EDLC 併用システム (EDLC and battery system) 図1. システム構成

Fig.1. Configuration of stand-alone PV systems

(A) コンバータ1の制御 (Control of Converter 1)

(B) コンバータ2の制御 (Control of Converter 2)
図2. EDLC併用システムの制御フロー

Fig.2. Control flowchart of EDLC and battery system

4. 実験結果

4.1 実験条件

PV 模擬電源を使用して晴天時及び曇天時を模擬した日 射パターンを任意に作成し,3日間を想定した試験を行っ た。負荷は通信用を想定し,約5W一定の抵抗負荷を使用 した。蓄電容量はCCシステムでは鉛蓄電池容量を3日分, EDLC 併用システムでは鉛蓄電池容量(2.5日分)とEDLC 容量(0.5日分)合わせて3日分とした。初期条件として 鉛蓄電池はSOC95%,25一定とし,EDLC は電圧 3V(放 電状態)とした。

4.2 任意に設定した3日間の実験

各システムの PV 出力電力,期待される発電電力,鉛蓄 電池電圧及び EDLC 電圧の特性を図 2 に示す。CC システ ムでは,鉛蓄電池の電圧により充電できる電力が決まり, 過充電防止設定電圧(14.3V)に達すると充電は停止する。 その際,鉛蓄電池と太陽電池が開放され,鉛蓄電池の放電 が行われ,過充電復帰電圧(13.2V)まで低下すると充電 が再開される。快晴時の満充電状態では一連の動作が繰り 返されるため,期待される発電電力と比較して PV 出力電 力が減少する。一方,EDLC 併用システムでは,急速充放 電特性に優れた EDLC に優先して充電が行われ,夜間等の 不日照時に鉛蓄電池の充電及び負荷電力供給が可能である。 鉛蓄電池の充電の際には,最適充電電圧(13.3V)で充電 が行われ,長時間の不日照時のみ鉛蓄電池の放電が行われ るため,鉛蓄電池の負荷が軽減される。

図3. 各システムの出力特性

Fig. 3 Systems output energy and voltage characteristics

<u>4.3 システム分析</u>

各システムに入出力される電力量の分析を図 4 に示す。 EDLC 併用システムは CC システムと比較して, PV ミス マッチ損失が 11%程度低減されている。しかしながら,各 コンバータによる損失が 10%程度,また EDLC による充 放電損失が 7%程度発生する。今後,コンバータの効率向 上と EDLC の充放電損失の低減を図ることにより,システ ムとしての損失低減も可能になると考えられる。

4.4 鉛蓄電池依存率

鉛蓄電池の充放電量及び依存率を表 1 に示す。ここで, 依存率とは,負荷に対して鉛蓄電池が放電した割合を表す。 EDLC 併用システムは, CC システムと比較して,充放電 量が半分程度に減少し,依存率は20%程度低減することが できる。このことから,EDLC 併用システムは,鉛蓄電池 の負荷低減に有効であることが確認できる。

表1. 鉛蓄電池充放電量及び依存率

Table.1 Dependency on battery

	充電量[Wh]	放電量[Wh]	依存率[%]
CC	230.86	240.69	69.55
FDI C	121 76	132 07	40.26

5. まとめ

提案している EDLC と鉛蓄電池を併用したシステムと 鉛蓄電池の充電制御にCCを用いたシステムを比較した結 果, 鉛蓄電池依存率を20%程度低減させることができ, 鉛 蓄電池の劣化防止が期待できる。

文 献

- [1] 斎藤,田淵,吉備他:大容量電気二重層コンデンサ,NEC 技報 Vol.46,No10,P89,1993
- [2] 川口,野崎,黒川:EDLC を併用した独立型太陽光発電シ ステム,太陽/風力エネルギー講演論文集,P495,1999